skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Kaizheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We investigate model assessment and selection in a changing environment, by synthesizing datasets from both the current time period and historical epochs. To tackle unknown and potentially arbitrary temporal distribution shift, we develop an adaptive rolling window approach to estimate the generalization error of a given model. This strategy also facilitates the comparison between any two candidate models by estimating the difference of their generalization errors. We further integrate pairwise comparisons into a single-elimination tournament, achieving near-optimal model selection from a collection of candidates. Theoretical analyses and empirical experiments underscore the adaptivity of our proposed methods to the nonstationarity in data. 
    more » « less
  2. We study the multitask learning problem that aims to simultaneously analyze multiple data sets collected from different sources and learn one model for each of them. We propose a family of adaptive methods that automatically utilize possible similarities among those tasks while carefully handling their differences. We derive sharp statistical guarantees for the methods and prove their robustness against outlier tasks. Numerical experiments on synthetic and real data sets demonstrate the efficacy of our new methods. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)